Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 10(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36551782

RESUMO

The prodromal phase of Parkinson's disease (PD) is characterised by many non-motor symptoms, and these have recently been posited to be predictive of later diagnosis. Genetic rodent models can develop non-motor phenotypes, providing tools to identify mechanisms underlying the early development of PD. However, it is not yet clear how reproducible non-motor phenotypes are amongst genetic PD rodent models, whether phenotypes are age-dependent, and the translatability of these phenotypes has yet to be explored. A systematic literature search was conducted on studies using genetic PD rodent models to investigate non-motor phenotypes; cognition, anxiety/depressive-like behaviour, gastrointestinal (GI) function, olfaction, circadian rhythm, cardiovascular and urinary function. In total, 51 genetic models of PD across 150 studies were identified. We found outcomes of most phenotypes were inconclusive due to inadequate studies, assessment at different ages, or variation in experimental and environmental factors. GI dysfunction was the most reproducible phenotype across all genetic rodent models. The mouse model harbouring mutant A53T, and the wild-type hα-syn overexpression (OE) model recapitulated the majority of phenotypes, albeit did not reliably produce concurrent motor deficits and nigral cell loss. Furthermore, animal models displayed different phenotypic profiles, reflecting the distinct genetic risk factors and heterogeneity of disease mechanisms. Currently, the inconsistent phenotypes within rodent models pose a challenge in the translatability and usefulness for further biomechanistic investigations. This review highlights opportunities to improve phenotype reproducibility with an emphasis on phenotypic assay choice and robust experimental design.

2.
Neuroimage ; 231: 117701, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33484853

RESUMO

PURPOSE: Quantitative susceptibility mapping (QSM) is a novel MR technique that allows mapping of tissue susceptibility values from MR phase images. QSM is an ill-conditioned inverse problem, and although several methods have been proposed in the field, in the presence of a wide range of susceptibility sources, streaking artifacts appear around high susceptibility regions and contaminate the whole QSM map. QSMART is a post-processing pipeline that uses two-stage parallel inversion to reduce the streaking artifacts and remove banding artifact at the cortical surface and around the vasculature. METHOD: Tissue and vein susceptibility values were separately estimated by generating a mask of vasculature driven from the magnitude data using a Frangi filter. Spatially dependent filtering was used for the background field removal step and the two susceptibility estimates were combined in the final QSM map. QSMART was compared to RESHARP/iLSQR and V-SHARP/iLSQR inversion in a numerical phantom, 7T in vivo single and multiple-orientation scans, 9.4T ex vivo mouse data, and 4.7T in vivo rat brain with induced focal ischemia. RESULTS: Spatially dependent filtering showed better suppression of phase artifacts near cortex compared to RESHARP and V-SHARP, while preserving voxels located within regions of interest without brain edge erosion. QSMART showed successful reduction of streaking artifacts as well as improved contrast between different brain tissues compared to the QSM maps obtained by RESHARP/iLSQR and V-SHARP/iLSQR. CONCLUSION: QSMART can reduce QSM artifacts to enable more robust estimation of susceptibility values in vivo and ex vivo.


Assuntos
Artefatos , Mapeamento Encefálico/normas , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/normas , Adulto , Animais , Isquemia Encefálica/diagnóstico por imagem , Mapeamento Encefálico/métodos , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/diagnóstico por imagem , Veias Cerebrais/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos , Ratos
3.
Brain Plast ; 4(1): 127-150, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30564551

RESUMO

Cognitive decline appears as a core feature of dementia, of which the most prevalent form, Alzheimer's disease (AD) affects more than 45 million people worldwide. There is no cure, and therapeutic options remain limited. A number of modifiable lifestyle factors have been identified that contribute to cognitive decline in dementia. Sedentary lifestyle has emerged as a major modifier and accordingly, boosting mental and physical activity may represent a method to prevent decline in dementia. Beneficial effects of increased physical activity on cognition have been reported in healthy adults, showing potential to harness exercise and cognitive stimulation as a therapy in dementia. 'Brain training' (cognitive stimulation) has also been investigated as an intervention protecting against cognitive decline with normal aging. Consequently, the utility of exercise regimes and/or cognitive stimulation to improve cognition in dementia in clinical populations has been a major area of study. However, these therapies are in their infancy and efficacy is unclear. Investigations utilising animal models, where dose and timing of treatment can be tightly controlled, have provided many mechanistic insights. Genetically engineered mouse models are powerful tools to investigate mechanisms underlying cognitive decline, and also how environmental manipulations can alter both cognitive outcomes and pathology. A myriad of effects following physical activity and housing in enriched environments have been reported in transgenic mice expressing Alzheimer's disease-associated mutations. In this review, we comprehensively evaluate all studies applying environmental enrichment and/or increased physical exercise to transgenic mouse models of Alzheimer's disease. It is unclear whether interventions must be applied before first onset of cognitive deficits to be effective. In order to determine the importance of timing of interventions, we specifically scrutinised studies exposing transgenic mice to exercise and environmental enrichment before and after first report of cognitive impairment. We discuss the strengths and weaknesses of these preclinical studies and suggest approaches for enhancing rigor and using mechanistic insights to inform future therapeutic interventions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA